Modeling the establishment of PAR protein polarity in the one-cell C. elegans embryo.
نویسندگان
چکیده
At the one-cell stage, the C. elegans embryo becomes polarized along the anterior-posterior axis. The PAR proteins form complementary anterior and posterior domains in a dynamic process driven by cytoskeletal rearrangement. Initially, the PAR proteins are uniformly distributed throughout the embryo. After a cue from fertilization, cortical actomyosin contracts toward the anterior pole. PAR-3/PAR-6/PKC-3 (the anterior PAR proteins) become restricted to the anterior cortex. PAR-1 and PAR-2 (the posterior PAR proteins) become enriched in the posterior cortical region. We present a mathematical model of this polarity establishment process, in which we take a novel approach to combine reaction-diffusion dynamics of the PAR proteins coupled to a simple model of actomyosin contraction. We show that known interactions between the PAR proteins are sufficient to explain many aspects of the observed cortical PAR dynamics in both wild-type and mutant embryos. However, cytoplasmic PAR protein polarity, which is vital for generating daughter cells with distinct molecular components, cannot be properly explained within such a framework. We therefore consider additional mechanisms that can reproduce the proper cytoplasmic polarity. In particular we predict that cytoskeletal asymmetry in the cytoplasm, in addition to the cortical actomyosin asymmetry, is a critical determinant of PAR protein localization.
منابع مشابه
Quantitative analysis and modeling probe polarity establishment in C. elegans embryos.
Cell polarity underlies many aspects of metazoan development and homeostasis, and relies notably on a set of PAR proteins located at the cell cortex. How these proteins interact in space and time remains incompletely understood. We performed a quantitative assessment of polarity establishment in one-cell stage Caenorhabditis elegans embryos by combining time-lapse microscopy and image analysis....
متن کاملA genome-wide RNAi screen for enhancers of par mutants reveals new contributors to early embryonic polarity in Caenorhabditis elegans.
The par genes of Caenorhabditis elegans are essential for establishment and maintenance of early embryo polarity and their homologs in other organisms are crucial polarity regulators in diverse cell types. Forward genetic screens and simple RNAi depletion screens have identified additional conserved regulators of polarity in C. elegans; genes with redundant functions, however, will be missed by...
متن کاملDepletion of the co-chaperone CDC-37 reveals two modes of PAR-6 cortical association in C. elegans embryos.
PAR proteins play roles in the establishment and maintenance of polarity in many different cell types in metazoans. In C. elegans, polarity established in the one-cell embryo determines the anteroposterior axis of the developing animal and is essential to set the identities of the early blastomeres. PAR-1 and PAR-2 colocalize at the posterior cortex of the embryo. PAR-3, PAR-6 and PKC-3 (aPKC) ...
متن کاملThe C. elegans homolog of Drosophila Lethal giant larvae functions redundantly with PAR-2 to maintain polarity in the early embryo.
Polarity is essential for generating cell diversity. The one-cell C. elegans embryo serves as a model for studying the establishment and maintenance of polarity. In the early embryo, a myosin II-dependent contraction of the cortical meshwork asymmetrically distributes the highly conserved PDZ proteins PAR-3 and PAR-6, as well as an atypical protein kinase C (PKC-3), to the anterior. The RING-fi...
متن کاملActo-myosin reorganization and PAR polarity in C. elegans.
The symmetry-breaking event during polarization of C. elegans embryos is an asymmetric rearrangement of the acto-myosin network, which dictates cell polarity through the differential recruitment of PAR proteins. The sperm-supplied centrosomes are required to initiate this cortical reorganization. Several questions about this event remain unanswered: how is the acto-myosin network regulated duri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 95 10 شماره
صفحات -
تاریخ انتشار 2008